Worksheet Exercise 4.1.A.	Name
Symbolizing Quantified Sentences	Class Date

Part A. Symbolize the following sentences, using obvious letters for names and simple predicates. (Watch out for hidden negatives.)

1.	George is not happy.	
2.	Carlos is smart, but he is not rich.	
3.	Everything is mixed up.	
4.	Somethings cannot be explained.	
	Not everything can be explained.	
	Nothing is greatest.	
7.	Not everything is immortal.	
8.	Expensive candy exists.	
9.	Inexpensive automobiles don't exist.	
10.	If there are unicorns, then somethings are magical.	
11.	If there are no ghosts, then Carlos is not a ghost.	
12.	Everything is spiritual, or everything is not spiritual.	
13.	Everything is either spiritual or not spiritual.	
14.	Something is smart, and something is a computer.	
15.	There are ghosts if and only if there is no matter.	
16.	Everything is red and sweet or not red and not sweet.	

Worksheet Exercise 4.1.B.	Name
Symbolizing Quantified Sentences	Class Date

Part B. Symbolize the following sentences, using obvious letters for names and simple predicates. These are harder. Use the available **Exercise Work Sheet** to submit your work.

VOI	rk.
1.	George and Sue like to dance, but neither Liz nor George like to sing.
2.	None of George, Sue, Liz, and Bill know how to paint.
3.	Simple, sober, silly Sally sits and Sophie sings.
4.	Some things don't like to sing, including George, but some things do like to sing although not George.
5.	Some things are costly and trendy, and some things like that are useful as well.
6.	George is such that he is definitely not a person who is generally very capable buspecifically not able to sing.
7.	Either something is good and something is bad, or nothing is good and nothing is bad.
8.	If nothing is both alive and made of gold, then either something is not alive, or everything is not made of gold.
9.	It is definitely false that nothing is both not alive and not made of gold. [Keep al the negatives.]
10.	If everything has value, and everything is unique, then, if George is an atom, ther unique atoms with value exist.

Worksheet Exercise 4.2.A.	Name
Symbolizing Complex Sentences	Class Date

Part A. Symbolize the following sentences in the blanks provided. Be sure to symbolize each individual idea used in these sentences with a corresponding predicate letter, and symbolize each negative word.

1.	Some problems are difficult.	
2.	All students are logical.	
3.	Some problems cannot be solved.	
4.	No student is omniscient.	
5.	Some easy problems can be solved.	
	All difficult problems can be solved.	
	No problem is unsolvable.	
	Some answers are difficult mathematical proofs.	
	Some unsolvable problems are incomprehensible.	
	· ·	
	No short answers are adequate solutions.	
	Not every person is a professional logician.	
	No person is a professional logician.	
	If difficult problems exist then logicians exist.	
	If all problems are difficult, all solutions are long.	
	Either problems exist, or no logicians have jobs.	
16.	Ella is a logician, but all problems are unsolvable.	

Worksheet Exercise 4.2.B.	Name
Symbolizing Complex Sentences	Class Date

Part B. Symbolize the following sentences. These are harder, and you will want to consult the translation rules back in Chapter 3.

cor	sult the translation rules back in Chapter 3.
1.	Only graduate students are enrolled in graduate programs. (G = graduate student, E = is enrolled in a graduate program)
2.	A great many metaphysical problems are both complex and unsolvable.
3.	Tired students can't study very well.
4.	Every person is irrational, if he or she is very angry.
5.	All and only students with high GPAs are eligble for the award.
6.	Everything is tolerable, except the creepy insects, they are definitely not.
7.	Broccoli and spinach are delicious and nutritious.
8.	A hungry tiger will eat you, if it can. (E = will eat you, A = is able to eat you)
9.	If someone is poisoned, then he/she must get an antidote. (G = gets an antidote)
10.	If anyone here starts to sing, George will get upset and leave. So, everyone, please don't. ($S = \text{starts to sing}$, $A = \text{is allowed to sing}$)

Worksheet Exercise 4.2.C.	Name
Symbolizing Complex Sentences	Class Date

Part B. Translate the following symbolic sentences into <u>regular</u> English sentences using the listed meanings for the predicate letters.

T = triangle,F = figure,C = circleE = three-sidedU = four-sided, B = blue, t = Sears Tower, c = Chicago S = square,G = green,M = matter,O = solid,1. $(\forall x)(Tx \supset Fx)$ 2. $\sim (\forall x)(Fx \supset Tx)$ 3. $(\forall x)(Cx \supset \sim Ex)$ 4. $(\exists x) \sim (Sx \& Gx)$ 5. $(\exists x)(\sim Sx \& \sim Gx)$ 6. $(\exists x)[(Gx \& Sx) \& Ux]$ 7. $(\forall x)(Gx \& Sx \& Ux)$ 8. $(\forall x)[Tx \supset (Ex \& Fx)]$ 9. $(\forall x)[Tx \supset \sim (Ux \& Fx)]$ 10. $(\forall x)[Tx \supset (\sim Ux \& Fx)]$ 11. $\sim (\exists x)[(Ex \& Fx) \& Cx]$ 12. $(\forall x)Mx \ V \ (\forall x) \sim Mx$ 13. $(\forall x)(Ox \& Fx) \& (\exists x) \sim Mx$ 14. Bt $\supset (\exists x)[(Ox \& Fx) \& Bx]$ 15. $(\forall x)(Gx \& Sx) \supset Sc$ 16. $(\exists x)(Sx \& \neg Fx) \supset (\forall x) \neg Fx$

Worksheet Exercise 4.3.	Name	
Calculating Truth-values	Class	

Part A. Translate each of the following sentences into a regular English sentence, using the listed meanings for the symbols; and then, state their truth-value, T or F.

T = triangle,F = figure,C = circle,S = square,U = four-sided, G = green,B = blue, c = Chicagotruth-value 1. $(\forall x)(Fx \supset Tx)$ 2. $(\forall x)(Cx \supset \sim Sx)$ 3. $(\exists x)(Sx \& Ux)$ 4. $(\forall x)(Sx \& Gx)$ 5. $(\exists x)(\sim Sx \& \sim Cx)$ 6. $(\forall x)(Bx \ V \ Gx)$ 7. $(\forall x)(\sim Bx \ V \sim Gx)$ 8. Tc

Part B. In the spaces provided, calculate the truth-values of the following sentences, using the <u>calculated truth-values</u> from Part A. Use the Tree Method.

9. Tc
$$\supset$$
 (\exists x)(Sx & Ux)

10.
$$(\forall x)(Fx \supset Tx) \lor (\forall x)(Bx \lor Gx)$$

11.
$$(\exists x)(Sx \& Ux) \equiv (\exists x)(\sim Sx \& \sim Cx)$$
 12. $\sim [(\forall x)(Bx \lor Gx) \& Tc]$

13.
$$\sim$$
Tc V \sim (\forall x)(Cx \supset \sim Sx)

14.
$$\sim (\forall x)(Fx \supset Tx) \supset \sim (\exists x)(Sx \& Ux)$$

Part C. In the spaces provided, calculate the truth-values of the following sentences. Use the Tree Method and the <u>symbol meanings</u> from Part A. You must <u>first</u> determine the values of the simple component sentences.

15.
$$(\forall x)(Fx \supset Sx) \equiv [(\forall x)(Tx \supset Ux) \lor \sim (Bc \& Tc)]$$

16.
$$(\exists x)(Fx \& Cx) \& (\exists x)(Fx \& \neg Cx) \& \neg (\exists x)[Fx \& (Cx \& \neg Cx)]$$

17.
$$[(\forall x)(Tx \supset Bx) \lor (\forall x)(Tx \supset \sim Bx)] \& (\forall x)[Tx \supset (Bx \lor \sim Bx)]$$

18.
$$(\forall x)[(Sx \& Bx) \supset (Fx \& Ux \& \neg Gx)] \supset [(\exists x)(Sx \& Tx) \lor (\exists x)(Bx \& Gx)]$$

19.
$$[(\forall x)(Cx \supset Bx) \& (\forall x)(Bx \supset Cx)] \equiv (\forall x)(Cx \equiv Bx)$$

20.
$$\{(\exists x)[Fx \& (Tx \& \neg Ux \& \neg Cx)] \lor (\exists x)[Fx \& (\neg Tx \& Ux \& \neg Cx)]\} \supset \neg (\forall x)Gx$$

Reference Sheet 4.4.

Rules of Quantificational Logic

In what follows, α/β indicates putting α for <u>all</u> occurrences of β , and α/β indicates putting α for <u>some</u> occurrences of β .

The Quantifier-Negation Laws

Q.N.
$$\sim (\forall x) Fx = (\exists x) \sim Fx$$

Q.N. $\sim (\exists x) Fx = (\forall x) \sim Fx$

Cat.Q.N.
$$\sim (\forall x)(Fx \supset Gx) = (\exists x)(Fx \& \sim Gx)$$

Cat.Q.N. $\sim (\exists x)(Fx \& Gx) = (\forall x)(Fx \supset \sim Gx)$

Universal Instantiation U.I.

No restrictions on the name **n**.

∴ (... n/x ...)

Existential Instantiation E.I.

- 1. **n** is a name that has <u>never</u> been used before
- ∴ select name n
- ∴ (... n/x ...)
- 2. **n** must first be introduced in a selection step

Existential Generalization E.G.

Universal Generalization U.G.

(... **n** ...)

select name **n** 1. The first line selects a name **n** never used before.

No restrictions on the name **n**.

- 2. The last line is not un-representative.
- \therefore $(\forall x)(\dots x/n \dots)$

Worksheet Exercise 4.4.A.	Name	
Practicing the Rules	Class	_ Date

Part A. For each of the following inferences, determine whether the conclusion may be derived by the rule listed. Answer YES or NO in the blanks provided. (Premiss "Ma" is listed only to make the name "a" already present in the deduction.)

1.	(∀x)(Fx V Gx)	2.	Ma (∀x)(Fx V Gx)	3.	Ma (∀x)(Fx V Gx)	4.	Ma (∀x)Fx V (∀x)Gx
:.	Fb V Gb	$\ddot{\cdot}$	Fa V Ga	:.	Fa V Gb	<i>:</i> .	 Fa V (∀x)Gx
	U.I		U.I		U.I		U.I
5.	Ma Fb & Gb	6.	Ma Fa & Ga	7.	Ma Fa & Gb	8.	Ma ~Fb
<i>:</i> .		$\ddot{\cdot}$	(∃x)(Fx & Gx)	:.		$\ddot{\cdot}$	~(∃x)Fx
	E.G		E.G		E.G		E.G
9.	Ma (∃x)Fx	10.	Ma (∃x)Fx	11.	Ma (∃x)Fx	12.	Ma (∃x)Fx
÷	Fb		select name a		select name b	∴ ∴	select name b
	E.I		E.I		E.I		E.I
13.	Ma ~(∃x)Fx	14.	Ma ~(∀x)Fx	15.	Ma (∃x)~Fx	16.	Ma ~(∃x)~Fx
<i>:</i> .	(∀x)~Fx	$\ddot{\cdot}$	(∀x)~Fx	$\ddot{\cdot}$	~(∀x)Fx	<i>:</i> .	(∀x)~~Fx
	Q.N		Q.N		Q.N		Q.N
17. ∴	Ma Fa (∀x)Fx	18.	Fa & Ga Select name a Fa Simp	19.	Fa & Ga Select name b Fa Simp	20.	Ma (∀x)(Fx & Gx) ☐ select name b ☐ Fb & Gb U.I.
		:.	 (∀x)Fx	:	(∀x)Fx	<i>:</i> .	_ Fb Simp (∀x)Fx
	U.G		U.G		U.G		U.G

Worksheet Exercise 4.4 Quantificational Deductions			Date	
Part B, 1–5. Symbolize the deductions for them. Check the	_	_		d, and give
(1) Everything is either green of Chicago is not green, but it is so So, Chicago is red and square.		matte	things are human or matt r is expendable. Data is a r ne. So, Data is expendable	non-human
1	Prem	1.		Prem
2				
So,				
3			So,	
4				
5				
6				
7				
8				
9				
10				
Allegro is an expensive horse. 1	Prem Prem	7 _ 8 9 _ 10		
(4) Queen Elizabeth is an orator too. All orators have had voice something funny had voice less	r and funn lessons. S	y (5) So o, All thii	me people are smart and f	funny. o, some
1	Prem	_ 1		<u>Prem</u>
2	Prem	_ 2		_Prem
So,			So,	
3		3		
4		4		
5		5		
6				
7		7		
8		8		
9		9		
10				
11				

<u>Some help</u>: Here is how you symbolize these arguments. Of course, you have to give the deductions too.

- (1) $(\forall x)(Gx \ V \ Rx)$, ~Gc & Sc /: Rc & Sc
- (2) $(\forall x)(Hx \ V \ Mx)$, $(\forall x)(Mx \supset Ex)$, $\sim Hd \ \& \ Ad \ /:. \ Ed$
- (3) $(\forall x)[(Px \& Hx) \supset Rx]$, $(\forall x)[(Rx \& Hx) \supset Ex]$, Pa & Ha /:. Ea
- (4) Oe & Fe , $(\forall x)(Ox \supset Vx)$ /: $(\exists x)(Fx \& Vx)$
- (5) $(\exists x)[Px \& (Sx \& Fx)]$, $(\forall x)Mx /: (\exists x)[Mx \& (Sx \& Fx \& Px)]$

Worksheet Exerc Quantificational De			Date	
			nents in the spaces pro	ovided, and giv
deductions for them. C	theck the symb	olization a	nswers at the end.	
(6) Some pink horses a expensive. So, expensi			All pink horses are rare. e pink. So, some horses a	
1	Pre	<u>m</u> 1.		Prem
So,		_ 2.		<u>Prem</u>
2			So,	
3				
4				
5				
6				
7				
3				
9 10			·	
11			·	
1 2 3	Pre	<u>m</u> 8.		
			·	
4			·	
5			•————	
6			•	
(9) Supply the missing st	eps and reasons	(10	D) Supply the missing steps	s and reasons
1. (∀x)(Fx & Gx)	Prem	1.	(∀x)(Dx & Sx)	Prem
2. (∀x)(Ox & Px)	Prem	2.	$[(\forall x)Sx] \supset (Ra \& Qb)$	Prem
2	_		3	
3			4	
4. Fa & Ga				
5	2, U.I.		5	
6			(Hv)Cv	
7			(∀x)Sx	
8	6,7, Conj			7, Simp
- 0.116	_	8.	(7.1) D.1	7, Simp
9. (∀x)(Gx & Px)		9.	(∃x)Rx	

<u>Some help</u>: Here is how you symbolize these arguments. Of course, you have to give the deductions too.

- (6) $(\exists x)[(Px \& Hx) \& (Rx \& Ex)] /:. (\exists x)(Ex \& Hx)$
- (7) $(\forall x)[(Px \& Hx) \supset Rx]$, $(\exists x)[(Wx \& Hx) \& Px]$ /: $(\exists x)(Hx \& Rx)$
- (8) $(\forall x)[(Px \& Cx) \supset (Lx \& Wx)]$, $(\forall x)(Lx \supset Ex)$, Pb & Cb /: $(\exists x)(Wx \& Ex)$

Worksheet Exercise 4.4.D. Quantificational Deductions	Name _ Class _			[Date		
Part D 11-15 Symbolize the following	na araum	ents in	the	snaces	nrovided	and	aive

Part D, 11-15. Symbolize the following arguments in the spaces provided, and give deductions for them. Check the symbolization answers at the end. These problems are more difficult—practice them first. Try to write a little smaller here to make things fit.

(11) Dogs are large animals suitable as pets. All large animals are potentially dangerous. So, dogs are potentially dangerous yet suitable as pets. (D, L, A, S, P)

(12) If all dogs are potentially dangerous, then they all require insurance. Fido requires no insurance; but Fido does bark; and only dogs bark. So, some dogs are not potentially dangerous. (D, P, R, f, B)

1 2/:	Prem	1	
3		4	
		5	
		6	
		7	
7		8	
8		9	
9		10	
10		_ 11	
11		12	
12		_ 13	
13		14	

(13) Some dogs are whimpy; and, some cats are ferocious. Whimpy things don't put up a fight; and, ferocious things don't back down. So, both some dogs don't put up a fight, and some cats don't back down. (D, W, C, F, P, B)

1	<u>Prem</u>	11
2	Prem	12
3	Prem	13
4	Prem	14
/:		15
5		16
6		17
7		18
8		19
9		20
10		21

(14) Betsy can't sing. But some can sing and climb mountains too. Others can't climb mountains, but they can dance. Now, if both singers and dancers exist, then no non-dancing non-singers exist. So, Betsy can't sing, but she can certainly dance. (b, S, M, D)

(15) All kittens are felines. All felines are whiskered animals. If all kittens are whiskered, then all felines are carnivors. All carnivorous animals are predators. So, all kittens are predators. (K, F, W, A, C, P)

1	Prem	1	Prem
2		2	
3	Prem	3	Prem
4	Prem	4	
		/:	
/:			
5		_ 5	
6			
7		_ 7	
8		_ 8	
9		9	
10		_ 10	
11		_ 11	
12		_ 12	
13		_ 13	
14		_ 14	
15		_ 15	
16		_ 16	
17		_ 17	
18		_ 18	
19			
20			
21			
22.		22.	

<u>Some help</u>: Here is how you symbolize these arguments. Of course, you have to give the deductions too.

- (11) $(\forall x)[Dx \supset ((Lx \& Ax) \& Sx)], (\forall x)[(Lx \& Ax) \supset Px] /: (\forall x)[Dx \supset (Px \& Sx)]$
- (12) $(\forall x)(Dx \supset Px) \supset (\forall x)(Dx \supset Rx)$, $\sim Rf$, Bf, $(\forall x)(Bx \supset Dx)$ /: $(\exists x)(Dx \& \sim Px)$
- (13) $(\exists x)(Dx \& Wx)$, $(\exists x)(Cx \& Fx)$, $(\forall x)(Wx \supset \sim Px)$, $(\forall x)(Fx \supset \sim Bx)$ /:. $(\exists x)(Dx \& \sim Px) \& (\exists x)(Cx \& \sim Bx)$
- (14) $(\exists x)(Sx \& Mx)$, $(\exists x)(\sim Mx \& Dx)$, $[(\exists x)Sx \& (\exists x)Dx] \supset \sim (\exists x)(\sim Dx \& \sim Sx)$ /:. $\sim Sb \& Db$
- (15) $(\forall x)(Kx \supset Fx)$, $(\forall x)[Fx \supset (Wx \& Ax)]$, $(\forall x)(Kx \supset Wx) \supset (\forall x)(Fx \supset Cx)$, $(\forall x)[(Cx \& Ax) \supset Px]$ /: $(\forall x)(Kx \supset Px)$

Manhahaat Francis A.F. A.B.	Maria	
Worksheet Exercise 4.5.A.B.	Name	
Deductions with C.P. and I.P.	Class Date	

Part A. Use the rule I.P. to show that the following arguments are valid.

(#1) 1. ~(∃x)Ux ∴ ~(∃x)(Mx & Ux)	Prem Concl	(#2) 1. (∃x)Ux V (Ub V Uc) ∴ (∃x)Ux ———	Prem Concl
(#3) 1. (∀x)(Ax V Bx) 2. (∀x)(Cx V ~Bx) ∴ (∀x)(Ax V Cx)	Prem Prem Concl	(#4) 1. (∀x)Ax V (∀x)Bx ∴ (∀x)(Ax V Bx)	Prem Concl

Part B.	Use the	rule C.P.	to show	that the	following	arguments	are valid.

(#5)		(#6)	
1. (∀x)(Ax ⊃ Bx) ∴ Ae ⊃ (∃x)Bx	Prem Concl	1. (∀x)(Ax ⊃ Bx) 2. (∀x)Mx ∴ Ab ⊃ (∃x)(Bx & Mx)	Prem Prem Concl
(#7)		(#8)	
1. (∃x)(Ax & Bx) ∴ (∀x)Mx ⊃ (∃x)(Bx & Mx)	Prem Concl	1. $(\forall x) (Mx \equiv Sx)$ $\therefore (\forall x) \sim Mx \supset (\forall x) \sim Sx$	Prem Concl

Worksheet Exercise 4.5.C.	Name
Deductions with C.P. and I.P.	Class Date

Part C. Give deductions for the following arguments. These are more difficult.

(#9) 1. (∀x)[Ax ⊃ (Bx & Cx)] 2. (∃x)Dx ⊃ (∃x)Ax ∴ (∃x)(Cx & Dx) ⊃ (∃x)Bx ———————————————————————————————————	Prem Prem Concl	(#10) 1. (∀x)[(Ax V Bx) ⊃ (Cx & Dx)] 2. (∀x)Cx ⊃ (∀x)Ex ∴ (∀x)Ax ⊃ (∀x)(Ax & Ex)	Prem Prem Concl
(#11) 1. (∀x)Ax V (∀x)Bx 2. (∀x)(Ax ⊃ Cx) ∴ (∃x)(Ax & ~Bx) ⊃ (∀x)Cx	Prem Prem Concl	$(#12)$ 1. $(\forall x)[Ax \supset (Bx \& Cx)]$ 2. $(\forall x)[(Bx \& Dx) \supset Ex]$ ∴ $(\forall x) \sim Ex \supset [(\forall x)Dx \supset (\forall x) \sim Ax]$	Prem Prem Concl

(#13) 1. (∀x)[Fx ⊃ (Gx & (∀y)Hy)] Prem ∴ (∀x)(∀y)[Fx ⊃ (Gx & Hy)] Concl	(#14) 1. (∀x)(Ax ⊃ Cx) Prem 2. (∀x)[(Cx & Dx) ⊃ Ex] Prem ∴ (∃y)(Ay & ~Dy) V (∀x)(Ax ⊃ Ex) Concl
(#15) 1. (∀x)(Ax ⊃ Bx) Prem 2. (∀x)(Bx ⊃ ~Cx) Prem 3. (∃y)By Prem ∴ ~(∃x)(∀y)[(Ax & Cx) V Cy] Concl	(#16) 1. (∀x)[(∃y)(Fx & Gy) ⊃ (Hx & (∀y)Jy)] Prem ∴ (∀x)(∀y)(∀z)[(Fx & Gy) ⊃ (Hx & Jz)] Cncl

Worksheet Exercise 4.6.A.B	Name
Demonstrating Invalidity	Class Date

Part A. Show that these arguments are invalid. In each case give an appropriate domain and state description. Use the indicated symbolic letters, as well as additional

		•			d look similar to the answer for #1. *
Nothings is	a red pig	. So, s	ometh	nings are	not red. (R, P)
D = { a, b	}				For this domain and description: Are the premisses = T? <u>yes</u> Is the conclusion = F? <u>yes</u>
George is sr	nart. So,	Georg	e is a	smart pe	erson. (g, S, P)
D = {	}				Are the premisses = T? Is the conclusion = F?
George is fu	nny. So,	some	peopl	e are fun	ny. (g, F, P)
D = {	}				Are the premisses = T? Is the conclusion = F?
There are no	o funny p	eople.	So, C	Seorge is	not funny. (F, P, g)
D = {	}				Are the premisses = T? Is the conclusion = F?
Some cats s	ing. Som	ne cats	dance	e. So, so	me cats sing and dance. (C, S, D)
D = {	}				Are the premisses = T? Is the conclusion = F?
Some people	e are not	singer	s. So	, some si	ngers are not people. (P, S)
D = {	}				Are the premisses = T? Is the conclusion = F?
All cats have	e tails. So	o, all n	on-ca	ts do not	have tails. (C, T)
D = {	}				Are the premisses = T? Is the conclusion = F?
All cats have	e tails. G	eorge I	nas a	tail. So,	George is a cat. (C, T, g)
D = {	}				Are the premisses = T? Is the conclusion = F?
All cats are	smart. S	ome sr	nartie	s are fun	ny. So, some cats are funny. (C, S, F)
D = {	}				Are the premisses = T? Is the conclusion = F?
. All things a	re smart.	. All fur	nny ca	ats are sr	mart. So, all cats are funny. (S, F, C)
D = {	}				Are the premisses = T? Is the conclusion = F?
	Nothings is a Nothings is a D = { a, b } George is sr D = { George is function D = { There are not D = { Some cats is D = { All cats have D = { All cats are D =	Me letters as needed Nothings is a red pig $D = \{ a, b \}$ George is smart. So, $D = \{ \}$ George is funny. So, $D = \{ \}$ There are no funny p $D = \{ \}$ Some cats sing. Som $D = \{ \}$ Some people are not $D = \{ \}$ All cats have tails. So $D = \{ \}$ All cats are smart. So $D = \{ \}$ All cats are smart. So $D = \{ \}$	Nothings is a red pig. So, so D = { a, b } Ra Pa T F George is smart. So, George D = { } There are no funny people. D = { } Some cats sing. Some cats D = { } All cats have tails. So, all no D = { } All cats are smart. Some smart. Some smart. Some smart. Some smart. Some smart. All functions are smart.	Nothings is a red pig. So, somether D = { a, b } Ra Pa Rb T F T George is smart. So, George is a D = { } George is funny. So, some people D = { } There are no funny people. So, CD = { } Some cats sing. Some cats dance D = { } All cats have tails. So, all non-cate D = { } All cats are smart. Some smarties D = { } All things are smart. All funny cate data are smart.	Nothings is a red pig. So, somethings are D = { a, b } Ra Pa Rb Pb T F T F George is smart. So, George is a smart per D = { } George is funny. So, some people are fun D = { } There are no funny people. So, George is D = { } Some cats sing. Some cats dance. So, some people are not singers. So, some sin D = { } All cats have tails. So, all non-cats do not D = { } All cats have tails. George has a tail. So, or D = { } All cats are smart. Some smarties are fun D = { } All things are smart. All funny cats are since the smart singers. So, some sin D = { } All things are smart. All funny cats are since the smart singers. So, some sin D = { } All things are smart. All funny cats are since the smart singers.

^{*} Throughout, many different answers are possible. >> Continued on back side >>

Part B. Show that the following arguments are invalid. In each case give an appropriate domain and state description. Your answers should look similar to the answer for #1.

(Don't use the domain individuals "a" and "b" here. Use the individuals "d" and "e" instead. Otherwise, things may get too confusing.)

11.	$(\exists x)Ax & (\exists x)Bx$	/:. (∃x)(Ax & Bx)
-----	---------------------------------	-------------------

D = { ______

Are the premisses = T? ______
Is the conclusion = F?

 $\mathsf{D} = \{ \qquad \}$

Are the premisses = T? ______ Is the conclusion = F? _____

13.
$$(\exists x) \sim (Ax \& Bx)$$
 $\angle : (\exists x) \sim Ax \& (\exists x) \sim Bx$

D = {

Are the premisses = T? ______
Is the conclusion = F? _____

14.
$$(\forall x)Ax \supset (\exists x)Bx$$
 /: $(\exists x)Ax \supset (\forall x)Bx$

D = {

Are the premisses = T? ______ Is the conclusion = F? _____

15.
$$(\forall x)Ax \supset (\forall x)Bx \ /: (\exists x)Ax \supset (\exists x)Bx$$

D = {

Are the premisses = T? ______ Is the conclusion = F? _____

16.
$$(\forall x)(Ax \supset Bx)$$
 \(\times \tau \) \((\dagge x)[(Ax \ V \ Cx) \ \to Bx)

 $\mathsf{D} = \{ \qquad \}$

Are the premisses = T? ______ Is the conclusion = F? _____

17. $(\forall x)(Ax \lor Bx)$, $(\forall x)(Bx \lor Cx)$ \angle : $(\forall x)(Ax \lor Cx)$

D = {

Are the premisses = T? ______ Is the conclusion = F? _____

18. $(\forall x)(Ax \ V \ Cx)$, $(\exists x)(Ax \ \& \ Bx)$ \angle : $(\exists x)(Ax \ \& \ Cx)$

D = { }

Are the premisses = T? ______ Is the conclusion = F? _____

Worksheet Exercise 4.7.A. Symbolizing Relations	Name	Date

Part A. Symbolize the following sentences in the blanks provided. Use the indicated predicate letters, relation letters, and name letters.

	$P = person$, $R = _has read _$, $s = Shakespeare$, $B = book$, $W = _wrote _$, $r = Romeo \ and \ Juliet$
1.	Shakespeare wrote Romeo and Juliet.
2.	Romeo and Juliet is a book, written by Shakespeare.
3.	Shakespeare wrote some books.
4.	Some person wrote <i>Romeo and Juliet</i> .
5.	Romeo and Juliet is a book, written by some person.
6.	Romeo and Juliet has been read by every person.
7.	Some people have not read <i>Romeo and Juliet</i> , a book written by Shakespeare
8.	Romeo and Juliet is a book that has been read by every person.
9.	Something has written something.
10.	Some person has written nothing.
11.	Some person wrote some book.
12.	Some person has read all books.

- 14. Not any person wrote any book.
- 15. Some books have been read by every person.
- 16. Some books have been read by no person.
- _____
- 17. Some people have read whatever Shakespeare wrote.
- 18. Whatever a person has writen, he has also read.

Worksheet Exercise 4.7.B. Symbolizing Relations		Date
Part B . Symbolize the following argume relation letters, and name letters.	ents, using	the indicated predicate letters,
 There is something that caused everyt something has caused itself. (C) 	hing	
2. Dumbo is bigger than any mouse. Mickis a mouse. So, Dumbo is bigger than sommouse. (d, m, B)	-	
3. Nothing can cause itself. So, nothing c cause everything. (C)	an	
4 . Bill the Barber shaves only those who him. Whoever pays someone has money. George has no money. So, Bill does not sh George. (b, P, S, M = has money, g)		
5 . Everything affects something important But some things are not important. So, so important things are affected by some uniportant things. (A, I)	me	
6 . Nancy is a girl who loves all boys. Fran a boy who hates all girls. So, some girl lik some boy who hates her. (n, G, L, B, f, H)	es	
7 . God can stop any event that is about thappen, provided he knows of it. God knowall events that are about to happen. So, God stop all bad events that are about to happen. (g, E, A, K, S, B)	ws	
8. Whatever. So, Red things that have bluthings are things that have things. (R, B,		
9 . Whatever is alive has some non-physic component. Whatever is non-physical is o side of time. Whatever is outside of time i eternal. So, whatever is alive has some eternal component. (A, P, C, O, E)	ut	
10 . All spiritual things in the actual situati possible situations, all spiritual things are situation are outside of time in all possible actual situation, $xSy = x$ is spiritual in situation.	outside of testions.	ime. So, all spiritual things in the actual $(Px = x \text{ is a possible situation, } a = \text{the}$

Worksheet Exercise 4.8.A.	Name	
Deductions with Relations	Class Date	

Part A. These arguments have the English meanings specified in Ex. 4.7.B. Give deductions for these arguments. Some are more difficult, and some require use of the rule CP.

 (1) 1. (∃x)(∀y)(xCy) ∴ (∃x)(xCx) 2. 3. 4. 5.	Prem Concl	 (2) 1. (∀x)(Mx ⊃ dBx) 2. Mm ∴ (∃x)(Mx & dBx) 3. 	Prem Prem Concl
(3)1. (∀x)~(xCx)∴ (∀x)~(∀y)(xCy)	Prem Concl	 (4) 1. (∀x)(~xPb ⊃ ~bSx) 2. (∀x)[(∃y)(xPy) ⊃ Mx] 3. ~Mg ∴ ~bSg 	Prem Prem Prem Concl
(5) 1. (∀x)(∃y)(Iy & xAy) 2. (∃x)~Ix ∴ (∃y)[Iy & (∃x)(~Ix & xAy)]	Prem Prem Concl	 (6) 1. Gn & (∀x)(Bx ⊃ nLx) 2. Bf & (∀x)(Gx ⊃ fHx) ∴ (∃x){Gx & (∃y)[(By & yHx) & xLy]} 	Prem Prem Concl

(7)		(8)	
1. (∀x)[(Ex & Ax & gKx) ⊃ gSx] 2. (∀x)[(Ex & Ax) ⊃ gKx] ∴ (∀x)[(Ex & Bx & Ax) ⊃ gSx]	Prem Prem Concl	1. p ∴ (∀x){[Rx & (∃y)(By&xHy)] ⊃ (∃y)	Prem Concl (xHy)}
(9) 1. (∀x)[Ax ⊃ (∃y)(~Py & yCx)] 2. (∀x)(~Px ⊃ Ox) 3. (∀x)(Ox ⊃ Ex) ∴ (∀x)[Ax ⊃ (∃y)(Ey & yCx)]	Prem Prem Concl	(10) 1. (∀x)[(xSa & Pa) ⊃ (∀y)(Py ⊃ xSy) 2. (∀y)[Py ⊃ (∀x)(xSy ⊃ xOy] ∴ (∀x)[(xSa & Pa) ⊃ (∀y)(Py ⊃ xOy)	Prem

Worksheet Exercise 4.8.B.	Name	
Deductions with Relations	Class	_ Date

Part B. Symbolize, and give deductions for the following arguments. These are difficult. Check the symbolization answers given below.

1. People like to do what they are good at. People are also good at something if and only if they practice it. So, people like to do what they practice. (P = person, G = x is good at y, L = x likes to do y, R = x practices y)

2.	1.	
		_
		_

Symbolization answer. Here is the symbolization answer for problem 1, but do try to figure it out for yourself first, really.

$$(\forall x)[Px \supset (\forall y)(xGy \supset xLy)]$$

 $(\forall x)[Px \supset (\forall y)(xGy \equiv xPy)]$
 $\therefore (\forall x)[Px \supset (\forall y)(xPy \supset xLy)]$

2. L'amour. Everybody loves a lover. Well, George and Barb, and Cindy and Mike, are really nice people; but Barb just doesn't love George. So, that's how one figures out that Cindy does not love Mike. (P = person, N = really nice, L = x loves y, g = George, b = Barb, c = Cindy, m = Mike)

<u>1.</u> <u>2.</u>

3. ∴

Symbolization answer. Here is the symbolization answer for problem 2, but do try to figure it out for yourself first.

(∀x){Px ⊃ (∀y)[(Py & (∃z)(Pz & yLz)) ⊃ xLy]} Pg & Ng & Pb & Nb & Pc & Nc & Pm & Nm ~(bLg) /:. ~(cLm)

3.	People do think with whatever heads they have, if they can. People can think with
wh	atever heads they have, if those heads are not full. Many people have heads that are
not	full. So, many people have heads that they do think with. (P = person, H = head,
H =	= x has y, T = x thinks with y, C = x can think with y, F = is full)

1.				
2.				
3.				
:.				
				_

Symbolization answer. Here is the symbolization answer for problem 3, but do try to figure it out for yourself first.

 $(\forall x)$ {Px ⊃ $(\forall y)$ [(Hy & xHy) ⊃ (xCy ⊃ xTy)]} $(\forall x)$ [Px ⊃ $(\forall y)$ ((Hy & xHy & ~Fy) ⊃ xCy)] $(\exists x)$ [Px & $(\exists y)$ (Hy & xHy & ~Fy)] ∴ $(\exists x)$ [Px & $(\exists y)$ (Hy & xHy & $(\exists x)$)]

		\sim	$\overline{}$
ŀΧ.	4	8.	В.

Name	/

hard to get. Whatever is very hard to get is very expensive. People who don't have a le
of money can't afford very expensive things. People who want things that they can't
afford are always miserable. You are a person who does not have a lot of money, but
you think you are content. People who think they are content but are actually miserable
are deluding themselves. So, you are deluding yourself. (a = you, P = person, W =
x wants to have y, $H = very hard to get$, $E = very expensive$, $L = has lots of money$,
A = x can afford y, $M =$ miserable, $C = x$ thinks y is content, $D = x$ deludes y)

Symbolization answer. Here is the symbolization answer for problem 4, but do try to figure it out for yourself first.

Worksheet Exercise 4.9.A.	Name	
Symbolizing Identities	Class Date	Date

Part A. Symbolize the following sentences in the blanks provided. Use the indicated predicate letters, relation letters, and name letters.

pred	dicate letters, relation letters, a	and name letters.	
	S = skyscraper E = expensive to live in B = very big		s = The Sears Tower c = Chicago n = New York
1.	There is at least one skyscrape	er in Chicago, and it is ve	ery big.
2.	There are at least two skyscra	pers in Chicago.	
3.	There is at most one skyscrap	er in Chicago.	
4.	There is exactly one skyscrape	er in Chicago.	
5.	The Sears Tower is the only sk	kyscraper in Chicago.	
6.	Every skyscraper except the S	Sears Tower is in Chicago	
7.	The one and only skyscraper i	n Chicago is expensive to	o live in.
8.	The Sears Tower is one of at le	east two skyscrapers in (Chicago.
9.	Some skyscraper in Chicago is	s taller than another skys	scraper in New York.
10.	No skyscraper in Chicago can	be identical to some skys	scraper in New York.
11.	The Sears Tower is the tallest	skyscraper there is.	
12.	Some skyscraper in Chicago h	as at least two occupants	s (they live there).

Worksheet Exercise 4.9.B.	Name	
Symbolizing Identities	Class	Date
- J		

pre	edicate letters, relation	n letters, and name lett	ers.	
	L = likes to dance H = hairdresser P = person E = exhausted T = is in town S = skater	D = Dutchman g = George s = Sally h = Harry n = Sally's neighbor	F = _ is a friend of _ A = _ admires _ T = _ talks to _ K = _ knows _ (active voice) F = _ is faster than _ outskated = some skater is faster	
1.	_	Sally and also of Harry at least two different fr	. Sally likes to dance, but Harry diends.	
	_			prem
				prem
	_			concl
2.	Sally is a friend of al neighbor is not a hai		f George, who is her neighbor. So	, her
				prem
				concl
3.	=	anything except hersel I to George. So, Sally do	f. Sally sometimes talks to herseli bes not admire George.	f, but
				prem
				prem
				concl
4.	5		y is known by Sally. Some people exhausted. So, Harry is exhausted	
				prem
				concl
5.	Some people in towr side of town knows S		ne person knows Sally. So, no one	e out-
				prem
				prem
				concl
6.	The fastest skater is outskated.	a Dutchman. So, any s	kater who is not a Dutchman can	be
				prem
				concl

Worksheet Exercise 4.9.C.	Name _	
Deductions with Identities	Class _	Date

Part C. Give deductions for these arguments.

		gFs & gFh Ds & ~Dh	Prem Prem	<u>/:.</u>	vF)(xE)	ı)[αFx	& aF	v & v	$\sim (x = y)$
		25 4 2.1			()(-)				(.)/1
		$(\forall x)(Hx \supset sFx) \& \sim sFg$ g = n					Prem Prem	/:.	~Hn
_									
- 43)	1.	$(\forall x)[\sim(x=s)\supset\sim sAx] \& sAs$					Prem		
		sTs & ~sTg					Prem	<i>/:</i> .	~sAg
_									
	2. 3.	$(\forall x)[\sim (x = s) \supset \sim hKx] \& hKs$ $(\forall x)[\sim (x = h) \supset \sim sKx] \& sKh$ $(\exists x)(Px \& hKx \& sKx)$				 	Prem Prem Prem		
_	4.	Es					Prem	<i>/:</i>	Eh
_									
_									

(#5)		$(\exists x)(Px \& Tx \& xKs)$ $(\forall x)(\forall y)[(Px \& Py \& xKs \& yKs) \supset x = y]$	Prem Prem	<i>/:</i> .	(∀x)[(Px & ~Tx) ⊃ ~xKs]
(#6) -	1.	1. $(\exists x)$ { Dx & Sx & $(\forall y)$ [(Sy & $\sim (y = x)) \supset xFy$] } $\therefore (\forall y)$ [(Sy & $\sim Dy$) $\supset (\exists x)$ (Sx & xFy)]			Prem