Reference Sheet 3.7. Rules of Traditional Logic

S, P, M are variables that represent both <u>affirmative</u> terms and <u>negative</u> terms.

Elementary Equivalences For Traditional Logic

Term Double Negation (Term DN)

P = non-non-P

where ${\bf P}$ is the subject term or the predicate term of a sentence, and where the rest of the sentence must be kept constant in the inference.

The Quantifier-Negation laws (QN)

not (all S are P)	=	some S are non- P
not (some S are P)	=	all S are non-P
no S are P	=	all S are non-P
no S are P	=	not (some S are P)

Conversion (Conv)

some S are P = some P are S no S are P = no P are S

Contraposition (Contrap)

all S are P = all opposite[P] are opposite[S]

Elementary Argument Forms For Traditional Logic

Univ Syll	Part Syll	
all S are M all M are P	some S are M all M are P	One may also supersize these rules by adding the appropriate continuation premisses.
∴ all S are P	∴ some S are P	continuation premisses.

Additional rules for Traditional Logic

Sing Univ Syll	Sing Part Syll	Name-Negation Law
all S are P n is S ∴ n is P	n is S n is P ∴ some S are P	\sim (n is P) = n is non- P